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It  is  shown that al lowance for  the finite th ickness  and finite t he rma l  conductivity of the walls 
r e su l t s  in m o r e  intense convection and heat  exchange.  The region of p a r a m e t e r s  where the 
p rob lem of convect ive heat  exchange m u s t  be stated as  conjugate is indicated. 

1. The convect ive motion of an e lec t r i ca l ly  conducting liquid between para l l e l  planes in a magnet ic  
field has  been cons idered  in a number  of works.  The sys temat ic  study of this  question both theore t ica l ly  
and exper imenta l ly  began long ago [1] and continues to the p resen t  [2-5]. The s ta tement  of the p rob lem has  
gradual ly  become complicated.  Repor t s  have appeared  in which the ef fec ts  of the e l ec t r i ca l  conductivity of 
the wall, of v i scous  dissipation,  and of the Joule heat  r e l e a se  of a constant  cu r r en t  on the magne tohydro-  
dynamic flow in a f la t  channel a r e  d i scussed  [6-9]. The p rob lem has  been fo rmula ted  as  conjugate, i . e . ,  
the energy  equations in the liquid and the wails a re  solved jointly using MHD equations, with the t e m p e r a -  
t u r e s  and heat  f luxes being equal at the solid--l iquid boundary [10-13]. 

In the p resen t  r epo r t  the conjugate p rob lem is examined with allowance for  the Joule heat  r e l e a s e  due 
to the flow of a h igh-f requency cur ren t .  

2. The one-dimensional  s ta t ionary  convection of an e lec t r i ca l ly  conducting liquid in a ve r t i ca l  chan-  
nel of width 21 with t he rma l ly  conducting walls of th ickness  h is examined.  The external  magnet ic  f ield B 0 
is constant  and perpend icu la r  to the walls (along the x axis).  The va r i ab le  e lec t r ic  c u r r e n t  f lows in a di-  
rect ion perpendicular  to the plane of the s t r e a m  and the magnet ic  field (along the z axis).  I t  is a s sumed  
that  the voltage of the applied e lec t r ic  field is much g r e a t e r  t han the  induced voltage E z >> Ez,in and j 2 / a  

j~z/a. In the fully developed one-dimensional  mode all the values  depend only on x (except for  the p r e s -  
sure) .  Consequently the induced magnet ic  field has  a component  only along the y axis .  The equations for  
the region of the liquid a re  writ ten as follows: 
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The heat  conduction equation fo r  the wails,  

d2T 
- 0 .  

dx ~ 

The following boundary conditions a r e  adopted fo r  Eqs. (1)-(3): 

for x - -  + l  v = 0 ;  T = T ~ ;  ~ aT ;~.1 clT~ 
: T =  - - L -  

in which there  a re  no internal  heat  sources ,  will be 

; E~ = E, . ;  

for x =  = ( l - k h )  T I = T  o 4- AT. 

(3) 

(4) 
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Fig.  i .  P r o f i l e s  of d i m e n -  
s ion l e s s  t e m p e r a t u r e  (a) and 
ve loc i ty  (b) o v e r  channel  c r o s s  
sec t ion  at S = 3 and n = 1 fo r  
d i f ferent  ~I,. Cu rves  1, 2, and 
3 c o r r e s p o n d  to the va lues  0, 
1, and 3 fo r  ~.  

H e r e  al l  the nota t ion  is s t anda rd  and the index 1 pe r t a in s  to the walls;  
#0 is  the  magne t i c  p e r m e a b i l i t y  of .a  v a c u u m  (4n. 10-r). 

In o r d e r  to jointly solve Eqs .  (1)-(4) it is  a s s u m e d  that  Ez(X, t) 
= Ez2{X) exp (iwt) and that  the f r e q u e n c y  of the e l ec t r i c  f ield is  high 
enough that  the Joule  hea t  r e l e a s e  can be r e p l a c e d  by a value  a v e r a g e d  
o v e r  the  per iod :  

(E2z) = lEvels" ( E , )  = 0  [14]. 
2 

Let  us  conve r t  to d i m e n s i o n l e s s  v a r i a b l e s  in Eqs .  (1)-(4). The 
fol lowing a r e  chosen  as  the sca le  fo r  the d is tance ,  t e m p e r a t u r e ,  v e l -  
oci ty ,  and field,  r e s p e c t i v e l y :  l, AT, V = g~/2AT/v;, Ez20. If one in-  
t r o d u c e s  the d i m e n s i o n l e s s  va lues  ~ = x / l ;  0 = (T--T0)/AT; ~r = v /V ,  
]~z2 = Ez2/Ez20, then Eqs.  (1)-(4) a r e  wr i t ten  (omitt ing the sign ~) as:  

d2--~0 + S IE,2[ 2 -F Ha 2 No ~ = O; (5) 
dx" 

- -  + 0 - -  HaZy = 0; 
dx  ~ (6) 

d'aEz2 __ 2in2Ez.; 
dx  ~ 

d2~ = o ;  
dx  ~ (7) 

x =  • 1: v = 0 ;  0 = 0 1 ;  dO _ )~1 d01 ; E ~ =  i; 
dx  ~, dx  

(+) x :  + 1 +  : 0 1 = ~  1. (8) 

The d i m e n s i o n l e s s  p a r a m e t e r s  Ha, S, n, and N have the fol lowing fo rm:  Ha = B0/4"-67~ is the H a r t -  
mann  number ;  S = a/2E220/2AAT c h a r a c t e r i z e s  the ra t io  of Joule  hea t  to the hea t  t r a n s m i t t e d  by t h e r m a l  
conduct ion;  n = / ~ e h a r a c t e r i z e s  the ra t io  of the ha l f -wid th  of  the channel  to the th i ckness  of the e l e c -  
t r i c a l  skin l aye r ;  N = g 2 1 4 p f l 2 A T / ~ v  c h a r a c t e r i z e s  the body fo rce .  

The boundary  condi t ions  fo r  the t e m p e r a t u r e  of the l iquid can be wri t ten  in another  fo rm.  By solving 
Eqs .  (7) with the a p p r o p r i a t e  boundary  condi t ions  (8) we will have 

x ~- l :  dO 1 - - 0  dO l - r 0  . . . .  ; x = - - l :  = , 
dx  ~ dx  tit 

where  ,I~ = X h / ~ l l  c h a r a c t e r i z e s  the r a t io  of t h e r m a l  conduc t iv t t i e s  and t h i c k n e s s e s  between the l iquid and 
the wal ls .  At @ = 0 we obtain the o r d i n a r y  t h e r m a l  boundary  condi t ions  when a cons tan t  but d i f ferent  t e m -  
p e r a t u r e  is given at the wal ls :  0(• = =~1. 

Equa t ions  (5) a r e  non l inear ,  but  s ince  the p a r a m e t e r  N is smal l  one can seek a solut ion 0, v in the 
f o r m  [6, 8] 

0 = 0  o + NO v v =  v o + N v  2, 

where  00, v 0 is the solut ion fo r  the c a s e  when the Joule  hea t  r e l e a s e  f r o m  the induced c u r r e n t  is neg lec ted  
in the e n e r g y  equation; 02 and v 2 a r e  d i s t u r b a n c e s  r e l a t ive  to  00 and v 0. 

One can  c l e a r l y  show when th is  a n a l y s i s  is just if ied.  F o r  example ,  fo r  m e r c u r y  when l = 1 c m  we 
have AT = 5~ and N = 2.4" 10 -3. 

F o r  the null  app rox ima t ion  we obtain a s y s t e m  of l i nea r  equat ions  

d20o 'a~v 
dx  ~ + S ]E~l ~ = O, dx-- ~ - -  I-Ia ~ o o @ 0 o = 0 

with the  bounda ry  condi t ions  (8). 
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Fig .  2. Pos i t ion  of  m a x i m u m  in t e m p e r a t u r e  and v e l -  
oc i ty  as  a funct ion of S and @ a t  n = 1. Curves  1, 2, 
and 3 c o r r e s p o n d  to the va lues  0, 1, and 3 fo r  r  

Le t  us  wr i te  the solut ion fo r  Ez2, 00, Vo: 
[Ez~[~ --  Nl  (2nx) �9 

N ~ ( 2 a )  ' 

0 o = S N2 (2n) - -  N 2 (2nx). + " x -{- S ~  
4n2Ni (2n) 1 + / I '  

S ' 7 ch2nx 
v o = A eh Ha x + B sh Ha x + 4n2N1 (2 'n) ~ 4n 2 - -  Ha 2 -}- 

sin 2n + sh 2n 

2nN 1 (2n) 

e~ 2nx ) x ~ D  

4n ~ + Ha ~ Ha -~ (l § 1I') 

N1,2(~) = ch$  �9 cos  ~, A, B, and D a r e  cons t an t s  of  in tegra t ion .  

The  e x p r e s s i o n s  fo r  0 2 and v2 a r e  omi t ted  s ince they a r e  c u m b e r s o m e .  
{7) can be solved num e r i c a l l y .  

3. Let  us  s tudy in detai l  the ef fec t  of the f ini te  t h i ckness  and f ini te  t h e r m a l  conduc t iv i ty  of the wal ls  
on the convec t ion  and heat  exchange in a channel  without an ex te rna l  magne t i c  f ie ld  and a l so  in the c a s e  
when t h i s  effect  can be neglec ted .  F o r  th is  we wr i te  the definite solut ion which is obtained f r o m  Eqs.  (5) 
o r  (9) by se t t ing  Ha = 0 t he r e :  

V ~ 

(9) 

The s y s t e m  of equa t ions  (5)- 

0 --~ 0o; 

S [Nx (2nx) ~ Nx (2n) + 2n2N~ (2n) (1 - -  x~)] 
16~4N~ (2n) 

x - -  x 3 Sh 2t~ + sin 2t~ 
+ + s ~  (1 - -  x'-). 

6 (I + ~)  4n N1 (2n) 

(10) 

Let  u s  c o n s i d e r  s o m e  l imi t ing  c a s e s  of (10). Suppose t he re  is no c u r r e n t  (S = 0) and the wall t h i ck -  
n e s s  is  infinitely sma l l  (h -* 0) o r  the t h e r m a l  conduc t iv i ty  of the wal ls  is infinitely l a rge  (hi.-* ~), i . e . ,  
,I, = 0. Then the t e m p e r a t u r e  and ve loc i ty  p ro f i l e s  r e p r e s e n t  a s t r a igh t  l ine and a cubic pa rabo la ,  r e s p e c -  
t ive ly .  This  is the we l l - s tud ied  c a s e  of na tu ra l  convec t ion  in a ve r t i c a l  channe l  with a cons tan t  and dif-  
f e r en t  wall t e m p e r a t u r e  [15]. 

The combined  na tu ra l  convec t ion  and convec t ion  induced by a h i g h - f r e q u e n c y  e l ec t r i c  f ield in a c h a n -  
nel  o c c u r s  when @ = 0 [16]. Then the t e m p e r a t u r e  and Velocity p ro f i l e s  v a r y  as  a funct ion of the vol tage  
(the p a r a m e t e r  S) and the f r equency  of the c u r r e n t  (the p a r a m e t e r  n): a m a x i m u m  develops  in the t e m p e r a -  
t u re  while the m i n i m u m  d i s a p p e a r s  f o r  the ve loc i ty  in the cavi ty .  

Ano the r  l imi t ing  c a s e  is obtained f r o m  (10) when n -* 0. Then the heat  r e l e a s e  is the g r e a t e s t  and 
the c o r r e s p o n d i n g  t e m p e r a t u r e  and ve loc i ty  d i s t r ibu t ions  have the fol lowing f o r m :  

X O =  ~S (l__x~) + l + ~  + S ~ ,  

x - - x  8 ] - -x"  (11) 
S ( 1 - - x  2 )+  +S~I  s - -  

v = ~ -  6(1-}-~)  2 

It  fo l lows f r o m  (11) tha t  f o r  a f ixed S the t e m p e r a t u r e  and ve loc i ty  i n c r e a s e  with an i n c r e a s e  in @. This  
m e a n s  that  with the conjugate  condi t ion the hea t  is drawn off f r o m  the wal ls  l e s s  than in the c a s e  of na tu ra l  
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Fig. 3. Curves (1-4) f o r Q = 0 a n d ~ I , = 0 ,  1, 5, 10 (a) and 
Vmi n for  ,I, = 0, 0.5, 1 (b) as a function of S and n. 

l 
I 

Fig. 4. Ratio Q = 0.01"Q 0 as 
a function of S and q, for  dif- 
ferent  n. Curves 1, 2, and 3 
cor respond  to the values 0, 1, 
and 5 for  n. 

convection. The position of the tempera ture  maximum is determined by 
the expression x = l/S(1 + ,I,), and the position of the velocity ext remum 
is determined by 

x = {-- S (1 -}- T)(3 -~- 6'I ~) : ]/SZ(1 ~- T)' (3 -7 6~) 2 § 12 } __ l  
6 

It is seen f rom these equations that with an increase  in ~, the position of 
the maxima approaches  the center  x = 0, while the minimum in the ve l -  
ocity distribution now occurs  at small  S. Consequently, in this limiting 
case  owing to the pa rame te r  ,l~ the convection in the channel is a l ready 
caused mainly by Joule heat re lease  beginning with small values of S. 

A numerica l  analysis  of Eq. (10) is required in general .  For  a 
more  graphic representat ion of the variat ion in tempera ture  0 and vel -  
ocity v profi les  of 0 and v are  const ructed in Fig. la,  b for fixed values 
of S and n and different values of the pa ramete r  ~. It is seen f rom the 
graphs that the finite thickness and finite thermal  conductivity has a 
marked effect on the tempera ture  and velocity. With an increase  in ,I, 
the Joule heat re lease  builds up more  and more,  as a resul t  of which 

the convection intensifies and the t empera tu re  and velocity profi les  become more  regular  parabolas,  i . e . ,  
the maximum of 0 and v is displaced toward the center .  This is well seen in Fig. 2a, b where the position 
of the maximum tempera tu re  and velocity is shown as a function of S for different ,I, at a fixed n. With an 
increase  in q~ a maximum in the t empera tu re  in the cavity, which does not exist in the case  of mixed con-  
vection, a l ready appears  at small  values of S. 

The portion of the convection which is due to the allowance for the finite thickness and finite thermal  
conductivity of the walls is easi ly est imated quantitatively f rom the pa rame te r s  S and n which provide for  
the app_~arance of a t empera ture  maximum and the absence of re turn flow within the channel for different 
values of tI,. Graphs of the values of n, S, and ~I, for which these conditions are  satisfied were calculated 
and plotted. The curves  in Fig. 3a cor respond  to a heat flux at the right wall equal to zero. In the region 
to the right of these curves  the t empera tu re  nowhere can have a maximum. The curves  in Fig. 3b c o r r e -  
spond to the minimum velocity, equal to zero. To the left of these curves  the velocity profile does not 
have a minimum, i . e . ,  re turn flow. It is seen f rom the graphs that with an increase  in q~ the region where 
a t empera ture  maximum exists in the cavity and there is no velocity minimum expands, and at small  values 
of the p a r a m e t e r  S the convection induced by the high-frequency cur ren t  a lready predominates  over  natural  
convection: n < 10 for  0.15 _< S < 10 when ,I, -> 1. 

Thus, the allowance for  the finite thickness and finite thermal  conductivity of the walls leads to the 
fact  that the convection and heat exchange become more  intense. This is explained by the fact that heat is 
drawn f rom the wa l l s  into the surrounding medium less  than in the case  without conjugate thermal  condi-  
tions. 

In o rder  to est imate up to what values of the pa rame te r  ,I, one can neglect the .effect of the finite th ick-  
ness  and finite thermal  conductivity of the walls on the convection and heat exchange it is appropriate to 
study the rat io of heat fluxes Q/Q0 when Q is 1% of Q0. Q0 cor responds  to ,I, = 0. Let us calculate the heat 
flux at the right wall 
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Q = ~ S sh 2n + sin 2n -}- 1 _ . _ ~  
~ 2n N 1 (2 n) 1 ~- 

The ratio Q/Q0 as a function of ~I, and S for different values of the parameter n is shown in Fig. 4. 
the region to the left of these curves the thermal conjugate boundary conditions do not play an important 
role. This region expands with an increase in n. 

In 

T a n d v  
X, a, v, and/3 
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NOTATION 

are the temperature and velocity; 
are the coefficients of thermal and electrical conductivity, kinematic viscosity, and 
volumetric expansion; 
is the density; 
is the angular frequency of current; 
is the acceleration of force Of gravity; 
is the imaginary unit; 
is the coordinate perpendicular to channel. 
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